ODS steels part I : produce, mechanical properties and oxidation conduct

Ods steels part i manufacture mechanical properties and oxidation behaviour
1 / 52
858 days ago, 433 views
PowerPoint PPT Presentation

Presentation Transcript

Slide 1

ODS steels – part I : make, mechanical properties and oxidation conduct Yann de Carlan, Jean Henry, Ana Alamo Arnaud Monnier Raphael Couturier, Emmanuel Rigal Céline Cabet Commissariat à l'Energie Atomique CEA, FRANCE

Slide 2

Overview Why ODS steels? Produce Observation and investigation Microstructure control Mechanical properties (+ radiation security) Welding strategies Oxidation properties

Slide 3

Why ODS ?

Slide 4

Why ferritic ODS? Radiation resistance at high temperature M. Inoue, JAEA, MATGENIV, 2007

Slide 5

Strengthening of amalgams: ODS rule Increase snags to disengagement float Precipitates or different separations Finer dispersoides and higher number thickness A Ds  l encourages Clement, CEA

Slide 6


Slide 7

Overview of the powder metallurgy prepare Caning degassing Mechanical Alloying (MA) Raw material powder High Isostatic Pressure Elemental or prealloyed powder delicate steel can MA powder Y 2 O 3 powder Attrition Mill Hot/icy Rolling Hot Extrusion Annealing Mother tube Machining Drilling Intermediate warmth treatment

Slide 8

Atomisation of a composite R. Lindau, FZK, GETMAT extend P91 steel SEM of atomized Powder sieving

Slide 9

Photo attritor + parameters R. Lindau, FZK, GETMAT extend alloying parameters - powder to ball proportion - processing vitality (- > rpm, cycling) - processing time

Slide 10

Hot expulsion Y de Carlan, CEA Hot expulsion ODS steel delicate steel

Slide 11

What occurs amid the procedure ? Mechanical alloying Consolidation 12h processing – With Ti 200nm 12h processing no Ti Before processing nano groups < 10 nm After processing Fe-18Cr-Ti Y 2 O 3 , Y. De Carlan et al., ICRFM13, 2007

Slide 12

What occurs amid the procedure ? Think about by X Ray diffraction : Pre-alloyed powder + 10% of yttria M. Ratti et al., Boston, MRS 2008

Slide 13

7000 6000 5000 48h processing with titanium 4000 48h processing without titanium Nombre de upsets 3000 2000 1000 0 Angle 2.Théta 26 31 36 41 46 51 What occurs amid the procedure? Examine by X Ray diffraction : Pre-alloyed powder + 10% of yttria Fe top After MA After MA After 1h @950°C M. Ratti et al., Boston, MRS 2008

Slide 14

Characterization by Tomographic Atom Probe Consolidation 1100°C M.K. Mill operator, D.T. Hoelzer, E.A. Kenik, K.F. Russell, Nanometer scale precipitation in ferritic MA/ODS composite MA957, Journal of atomic materials 2004 UT - BAT T EL L E O ak Ridge National Laboratory, U .S . Branch of Energy D. Hoelzer After mechanical alloying After solidification 14

Slide 15

Alternative process courses M. Inoue, JAEA

Slide 16

Alternative process courses OCAS, GETMAT extend

Slide 17


Slide 18

Optical microscopy General microstructure Optical micrographs of the general microstructure of MA957 in the (an) as-got condition and in the wake of tempering at 1300°C for (b) 1 h and (c) 24 h M.K. Mill operator et al., JNM 329–333 (2004) 338–341

Slide 19

0.85 W 0.46 Y 0.3 Ti SEM, EDX and microprobe Grain size and morphology Structure homogeneity SEM picture of MA957 recrystallized grains acquired after twisting by icy drawing and recrystallization warm treatment at 1100°C Microprobe examination of as-fabricated Fe-18Cr-Ti-Y 2 O 3 combination Y de Carlan, CEA A. Alamo et al., JNM 329–333 (2004) 333–337, CEA

Slide 20

TEM 12Y1 ODS steel: brilliant and dim field TEM micrographs taken close bar heading B ~(1 2) Y 2 O 3 molecule sizes are in the scope of a couple of many nanometers in width I.- S. Kim et al., JNM 280 (2000) 264-274

Slide 21

Atom Probe Nanometer scale precipitation in ferritic MA/ODS combination MA957 after hot union M.K. Mill operator et al., JNM, 2004 21

Slide 22

Analysis by XRD and SANS Nature of solidified stages Particles size and appropriation SANS of ODS steels with 0.3%Y 2 O 3 and 10%Ti at RT under attractive field (2 Teslas) opposite to the occurrence neutron shaft course, in a scope of disseminating vectors going from 0 to 0.16 nm - 1 XRD of ODS steels with 0.3%Y 2 O 3 and 10% Ti real pinnacle of Fe as per ICDD db M. Ratti et al., Boston, MRS, 2008, CEA M. Ratti et al., ICRFM13, 2007

Slide 23

Microstructure control

Slide 24

Ti is the best component to refine the dispersoid sizes Precipitation of Ti-Y-O (C) nanoscale bunches Chemical creation: Minor Alloying Elements Refinement of dispersoids size by Minor Alloying Elements AP-FIM with 3D mapping MA/ODS12-YWT Larson D.J. et al., Scripta Mater. 44 (2001) 359-364, ORNL Inoue M., JAEA, MATGENIV, 2007

Slide 25

Chemical organization: Y 2 O 3 content Effect of expansion of Y 2 O 3 in 13Cr-3W-0.5Ti on elastic properties at 650°C Effect of expansion of Y 2 O 3 in 13Cr-3W-0.5Ti on crawl crack quality at 650°C Ukai S., JNM 204 (1993) 65-73

Slide 26

Chemical structure: Minor Alloying Elements Effect of expansion of Ti in 13Cr-3W-0.5Y 2 O 3 on crawl break quality at 650°C Fig 4 Ukai JNM 1993 Ukai S., JNM 204 (1993) 65-73

Slide 27

Chemical sythesis: Excess of oxygen Effect of abundance O in 13Cr-3W-0.5Ti-0.5Y 2 O 3 on crawl burst quality at 650°C Ukai S., JNM 204 (1993) 65-73

Slide 28

Effect of the grain estimate Effect of MA957 ODS-composite microstructure on the effect properties the malleable properties fine grain A. Alamo et al. , JNM 329–333 (2004) 333–337

Slide 29

Mechanical properties

Slide 30

Creep properties (crawl crack time) A. Alamo et al., JNM 329–333 (2004) 333–337

Slide 31

Creep of high quality ODS amalgams

Slide 32


Slide 33

Basis of Welding of two metallic pieces = production of a metal security between the iotas of the 2 sections Weld must be as mechanically solid as the base metal HT quality is because of the uniform scattering of nanoscale oxide particles  welding operation needs to hold the nanostructure no reallocation of the dispersoids no collection of the dispersoids no adjustment in the underlying microstructure fluid state welding strong state welding arnaud.monnier@cea.fr

Slide 34

Liquid state welding liquefying of the base metal change in the microstructure Arc welding: GTAW (Gas Tungsten Arc Welding) GMAW (Gas Metal Arc Welding): MIG (Metal Inert Gas) or MAG (Metal Active Gas) Electron pillar welding, laser welding GTAW welder (2) GTAW standard (2) GTAW gear (1) GMAW (1) (1) CEA/DEN/DANS/DM2S/SEMT/LTA (2) www.wikipedia.com GTAW weld in restricted hole (1) electron bar hardware (1)

Slide 35

Solid state wedling Solid state welding hold the microstructure Solid state welding + atomic imperatives: huge scale, glove box working HIP (Hot Isostatic Pressing) SPS (Spark Plasma Sintering) Friction Stir Welding, Resistance Welding FSW rule (6) Resistance welding guideline (4) SPS rule (3) (3) www.ceramicindustry.com (4) www.swantec.com Resistance welding operation (5) (5) www.plasmo.eu (6) www.wikipedia.com

Slide 36

Hot Isostatic Pressure Surface molding: Degreasing, corrosive cleaning, mechanical cleaning, ionic sputtering, covering… Canning: in a steel container (welded by GTAW) Degassing of the can (P ~ 10 - 5 mbar) Closing of the can, gas-snugness HIP cycling : ~1000 °C/1000 bar/1 h Removal of the can: machining, substance disintegration emmanuel.rigal@cea.fr

Slide 37

High Isostatic Pressing Mockup: upper plate emmanuel.rigal@cea.fr Mockup: first divider Mockup: cooling plate Eurofer joint

Slide 38

Spark Plasma Sintering (SPS) raphael.couturier@cea.fr, CEA Université de Bourgogne SPS rule INSA Lyon

Slide 39

Resistance welding www.cea.fr Resistance welding gadget of CEA/DEN/DANS/DM2S/SEMT/LTA arnaud.monnier@cea.fr

Slide 40

Resistance welding – portrayal of the weld hardness of the weld = hardness of the base metal requirements for precise investigation of the dispersoid size and assignment arnaud.monnier@cea.fr

Slide 41

Characterization of ODS weld How to describe an ODS weld? Normal techniques to describe a weld SEM, EDS investigation, hardness profile Do not permit watching nanoscale dispersoids Methods to portray an ODS TEM, nano-space, SANS Do not permit checking for the weld homogeneity + in fact hard to perform

Slide 42

Oxidation properties

Slide 43

Example of business ODS chromia-shaping alumina-framing

Slide 44

Y is a RE !!! Enhance the oxidation and erosion properties  longer administration life RE = Reactive Element powerful when included as metal or amalgam oxide dispersoids (ODS) ionic implantation surface covering Fe-24Cr 800°C, air

Slide 45

alumina scale spalls out insurance is lost 12Cr-2W ODS (0.24 Y 2 O 3 ) FMS 12Cr-2W Oxidation in dry air at 650°C for 2000hrs Improvement of the oxidation properties Surface oxide thickness Mass pick up Spallation

Slide 46

Influence on the scale arrangement Chromia shaping Alumina framing Decrease of the basic Cr% for chromia development Promote -Al 2 O 3 (no short lived θ - Al 2 O 3 ) Decreases the length of brief oxidation (lessens the base metal oxidation) 12Cr steel oxidized at 1300°C in dry air for 50h

Slide 47

O 2 O 2 O Cr no Y Wagner hypothesis O 2 O Y 2 O 3  bull  bull 2 t Influence on the scale development Chromia shaping Alumina framing Supress outward dissemination of metal cation Decrease the oxidation rate (illustrative steady) Possible change in the oxidation energy (from explanatory to subparabolic)

Slide 48

2µm Influence on the scale microstructure and grip Chromia shaping Alumina shaping Increase bond  spallation resistance Increase the scale compacity and abatement the oxide grain estimate Supress the pores at the combination/scale interface FeCrAl oxidized at 1300°C for 100h Al 2 O 3 scattering Tb 4 O 7 scattering

Slide 49

Which is the ideal RE amount? No commonsense govern It relies on upon Chemical nature of the RE Size and dispersion Chemical association with Ti, C, N Fabrication procedure