3D Face Reconstruction from Monocular or Stereo Images. Thomas Vetter Universit y of Basel Switzerland http://gravis.cs.uni bas.ch
Slide 2Change Your Image ...
Slide 3Analysis by Synthesis show parameter Analysis Image Model Synthesis Image 3D World Image Description
Slide 4Approach: Example based demonstrating of confronts 2D Image 3D Face Models 2D Image 2 D Face Examples = w 1 * + w 2 * + w 3 * + w 4 * +. . .
Slide 5Morphing 3D Faces 1 __ 2 3D Blend 3D Morph 1 __ = + 2
Slide 6Shape and Texture Vectors Reference Head Example i
Slide 7Surface enlistment: Which representation?
Slide 8Registration in various representations Curvature Guided Level Set Registration utilizing Adaptive Finite ElementAndreas Dedner, Marcel Lüthi, Thomas Albrecht and Thomas Vetter IN: Proceedings DAGM'07: Heidelberg 2007 Optimal Step Nonrigid ICP Algorithms for Surface Registration Brian Amberg, Sami Romdhani and Thomas Vetter IN: Proceedings, CVPR'07, Minneapolis, USA 2007. A Morphable Model for the Synthesis of 3D Faces. Volker Blanz and Thomas Vetter IN: SIGGRAPH'99 Conference Proceedings, 187-194 Implicit: Triangulated: Parameterized:
Slide 9Database of 3D Faces
Slide 10Vector space of 3D countenances. A Morphable Model can produce new faces. a 1 * + a 2 * + a 3 * + a 4 * +. . . = b 1 * + b 2 * + b 3 * + b 4 * +. . .
Slide 11Manipulation of Faces Modeler
Slide 12Continuous Modeling in Face Space Caricatur e Original Average Anti Face
Slide 13Model l ing the Appearance of Faces A face is spoken to as a point in face space. Which bearings code for particular characteristics ?
Slide 14Learning from Labeled Example Faces Fitting a relapse work
Slide 15Facial Attributes Weight Subjective Attractiveness Gender Original
Slide 163D Shape from Images Face Analyzer Input Image 3D Head
Slide 17Matching a Morphable 3D-Face-Model R = Rendering Function = Parameters for Pose, Illumination, ... Find ideal a, b, r !
Slide 18Automated Parameter Estimation Ambient: power, shading Parallel : force, shading, bearing Color: differentiate, picks up, balances Face Parameters 150 shape coefficients an i 150 surface coefficients b i head position head introduction central length 3D Geometry Light and Color
Slide 19Image Formation: at every Vertex k Rigid Transformation Normals Phong Illumination Perspective Projection Color Transformation b i an i
Slide 20Error Function Image contrast (pixel power cost work) Plausible parameters Minimize
Slide 21movement by Volker Blanz.
Slide 22Using Multiple Features ��
Slide 23Which Feature to utilize? some Edge finder
Slide 24Edge Feature Rigid Transformation Normals Phong Illumination Perspective Projection Color Transformation b i an i
Slide 25Edge Fitting Results
Slide 26Multi-Features Fitting Algorithm
Slide 27Multi-Features Fitting Algorithm 1 2 3 4 5 At stage 4:
Slide 28Recognition from Images Complex Changes in Appearance Images: CMU-PIE database.
Slide 293D Computer Graphics
Slide 30Correct Identification "1 out of 68" (%) 99.5 83.0 97.8 86.2 79.5 85.7 92.3 95.0 89.0 exhibition front side profile test front 99.8 side 99.9 profile 98.3 aggregate CMU-PIE database: 4488 pictures of 68 people 3 postures x 22 enlightenments = 66 pictures for every person
Slide 31Reanimation of Images V. Blanz, C. Basso, T. Poggio & T. Vetter Reanimating Faces in pictures and Video Proc. of Eurographics 2003
Slide 32Expression Transfer Fitting Rendering
Slide 33Analysis by Synthesis show parameter Image Processing Edges Highlights Segmentation … Image Model some ║ X Analysis Synthesis 3D World Image Description Image
Slide 34Segmenting hair a general necessity ? No exception identification with anomaly veil
Slide 35Skin division We have to cover out non-skin areas/anomalies 3DMM is not adequate
Slide 36Shading Problem Skin locales contain solid power angles that make a division troublesome!
Slide 37Illumination Compensation
Slide 38Illumination Compensation Skin Detail Analysis for Face Recognition Jean Sebastian Pierrard , Thomas Vetter CVPR 2007 Local fitting
Slide 39Segmentation Results GrabCut Skin Detail Analysis for Face Recognition Jean Sebastian Pierrard , Thomas Vetter CVPR 2007 Thresholding
Slide 40Try New Hairstyles 3D Angle, Position Illumination, Foreground, Background 3D Shape and Texture
Slide 41More Hairstyles 3D Shape and Texture 3D Angle, Position Illumination, Foreground, Background
Slide 42Using more than a solitary picture ? Reproducing High Quality Face-Surfaces utilizing Model Based Stereo Brian Amberg, Andrew Blake, Andrew Fitzgibbon, Sami Romdhani and Thomas Vetter IN: Proceedings ICCV 2007 Rio de Janeiro, Brazil
Slide 43Model Based Stereo
Slide 44Model Based Stereo
Slide 45Silhouette Term
Slide 46Color Difference Term
Slide 47Results
Slide 48Results
Slide 50Results on Flash Data Ground Truth Monocular Stereo
Slide 51Acknowledgment Volker Blanz Sami Romdhani Brian Amberg Jaen Sabastian Pierrard
SPONSORS
SPONSORS
SPONSORS